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Abstract

We formulate a dynamic model of party competition with a one-dimensional policy

space. Policy choices at different times are linked because parties cannot change their

policies abruptly; instead, policy adjustment happens gradually. Parties are uncertain of

the median’s policy preferences at the time they choose their policies. Our results relate the

steady state equilibrium of the dynamic game to parties’ beliefs about voter preferences.

In particular, we show that for symmetric games, the steady-state outcome is the local

equilibrium of the corresponding static Wittman game.

† We thank Martin Osborne and John Duggan for their very helpful comments on an earlier draft.



1. Introduction

In this paper, we provide a dynamic version of Wittmans’s (1983) model of policy

competition that incorporates a constraint on parties’ adjustment rates of their policy

positions. Our work is motivated, in part, by evidence that Adams and Somer-Topcu

(2009) provide for the Party Dynamics Hypothesis (PDH); that is, the hypothesis that

political parties respond to rival parties’ policy changes. In their empirical test of PDH,

Adams and Somer-Topcu distinguish between this strategic response and a party’s own

response to the change in public opinion that instigated its rival’s policy shift and identify

the former with PDH. Our model not only provides a framework for analyzing PDH, but

also for understanding how the anticipated response of a party affects its rivals initial

reaction to the public opinion, or more broadly, to changes in voter preferences.

The Downs-Hotelling model of two-party competition yields a counterfactual result:

in the unique equilibrium, the two parties offer identical policy positions that equal the

median’s preferred choice. To bring models of spatial competition inline with the empirical

evidence, Wittman (1983) modifies the Downs-Hotelling model in two ways.1 He assumes

that parties are uncertain about the location of the median voter when they choose their

policies and that parties care about policy. We refer to a static candidate competition

model with these features as a Wittman game. In a Wittman game, the uncertainty about

the location of the median voter lessens a party’s incentive to move closer to the opponent’s

policy. The resulting equilibrium features two distinct policy positions that depend on the

parties’ preferences and on the underlying uncertainty about voter preferences.

To model the constraint on parties’ rates of policy adjustment, we formulate our

dynamic model in continuous time and assume that parties must choose policy trajectories.

Our central hypothesis is that parties cannot change policies abruptly but instead must

adjust them gradually. The time derivative of a policy trajectory measures the speed of

change, and our requirement of “no abrupt changes” translates into an upper bound on this

derivative. We consider two versions of our dynamic model: in the first version, elections

occur at the same frequency as policy adjustments; in the second version, elections are

infrequent relative to policy adjustments.

1 Wittman (1983) builds on the probabilistic voting models of Hinich and Ordeshook (1969), Hinich,
Ledyard and Ordeshook (1972,1973), and others. See, Duggan (2014) for a survey.
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There is evidence suggesting that political parties’ ideological positions change little

between adjacent elections (Dalton and McAllister (2014)). One reason for this stabil-

ity may be that parties occupy equilibrium positions that need little adjustment between

elections. A second reason may be that parties simply cannot adjust their ideological

position very abruptly. Communicating changes in a party’s ideological position to ac-

tivists and voters is costly and time consuming. Furthermore, a party may lose many of

its activists and volunteers after breaking with its past ideological position, rendering it

uncompetitive were it to attempt such a shift. Finally, voters may find large and abrupt

ideological changes untrustworthy and, instead, assume that past positions offer a more

credible prediction of the party’s policies. Our model summarizes these factors with a

simple constraint on the speed of adjustment. Adjustment speeds may reflect a parties’

resources; that is, parties with greater financial resources and larger pools of activists may

find it easier to adjust their positions than parties that lack these resources. For much of

the analysis, we assume that parties face identical adjustment constraints, but we discuss

asymmetric adjustment speeds in the final section of paper.

In our dynamic model, parties are uncertain of the median’s policy preferences at

the time they choose their policies. Specifically, parties’ believe that the median’s ideal

policy is distributed on the interval [−1, 1] according to a symmetric distribution Γ that

admits a continuous density. The main result of the paper characterizes a steady state

equilibrium of the dynamic game and relates this equilibrium to parties’ beliefs about voter

preferences. We show that what matters for policy outcomes is Γ′(0); that is, the density

of Γ at 0. Thus, only a narrow aspect of (parties’ beliefs about) voter preferences affects

policy outcomes: the likelihood that the median voter prefers the most moderate policy

(policy 0).

Duggan (2014) shows that the static Wittman games has a pure strategy Nash equi-

librium if Γ is log-concave.2 Our dynamic game has a pure strategy equilibrium even if

this condition is violated. Moreover, this equilibrium converges to a steady state in which

parties choose policies that are local (but not global) pure strategy equilibria of the static

game. If parties could change their policies abruptly, the local equilibrium would provide

2 See Duggan (2014), Theorem 14. Duggan does not assume the game is zero sum. However, his
argument extends to our model.

2



incentives to deviate. In our dynamic model, parties cannot realize these gains from de-

viating because of the interaction of two of its features: parties must adjust their policies

gradually and their opponents can react quickly to these adjustments. These two features,

together, imply that the rival party’s policy adjustments will neutralize any gains from a

deviation. Thus, our main result establishes that the unique local equilibrium of the static

game (which always exists) is also the unique steady state of the frequent elections version

of our model.

For the infrequent elections version of our model, we show that the unique local

equilibrium is a steady state and, when parties are sufficiently office motivated, it is the

only steady-state outcome. Finally, we investigate what happens when one party can

devote much greater resources to policy adjustments than its rival; that is, we assume that

one party can adjust much more quickly than the other. We establish a lower bound for

the advantaged party’s equilibrium payoff and show that this bound is close to what the

advantaged party would receive in the equilibrium of a two-stage version Wittman’s model

in which the advantaged party chooses its policy after observing the choice of its rival.

In a multi-dimensional policy setting, Schofield (2001) and Schofield and Sened 2002)

analyze local equilibria and provide conditions for their existence. Our model comple-

ments Schofield’s approach by establishing conditions under which a local equilibrium is

the unique outcome of a dynamic policy game. Kramer (1977) analyzes policy trajecto-

ries of a model in which successive policies are chosen to maximize their vote share. He

characterizes the limit points of this dynamic process in a multi-dimensional policy space.

While Kramer’s (1977) setting, purpose and dynamic model are quite different than ours,

both his approach and ours provide a common insight: a dynamic model often leads to

predictions that are sharper and less permissive than the corresponding static model. Fi-

nally, our dynamic model is related to Anderson (1984) and Bergin (2006) who introduce

inertia and quick response to dynamic games. Bergin (2006) analyzes repeated games in

continuous time and proves a folk-theorem for those games. In contrast to their models,

we analyze a zero-sum game which yields a unique equilibrium payoff and, under certain

conditions, a unique equilibrium outcome.
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2. Wittman Games

Consider the following one-shot policy game: there are two parties, 1, 2. Party 1

prefers policies to the left and chooses a policy x ∈ [−1, 0] while party 2 prefers policies to

the right and chooses a policy y ∈ [0, 1]. At the time parties choose policies, the median’s

ideal point is uncertain and distributed on the interval [−.5, .5]. The realized median elects

the party that has chosen a policy closer to her ideal point. Let Γ be the restriction of the

cumulative distribution function of the median’s distribution to the interval [−.5, .5].

For a given pair of policies, x, y, let m = (x + y)/2 be the policy midpoint. If o is

the realized median, then party 1 wins if o < m and party 2 wins if o > m. Otherwise,

the election is a tie. If there is a winner, the winning party’s policy is implemented; if the

election is tied; that is, if o = m or if x = y = 0, then each party’s policy is implemented

with probability .5. When policy z is implemented, party 2’s payoff is v̂(z) + β if it wins

and v̂(z) − β if it loses while party 1’s payoff is −v̂(z) + β if it wins and −v̂(z) − β if it

loses. The parameter β ≥ 0 measures the payoff from holding office. Therefore, party 2’s

(expected) payoff from the policy profile (x, y) is

π(x, y) = v̂(x) · Γ(m) + v̂(y) · (1− Γ(m)) + β · (1− 2Γ(m)) (1)

We assume that the game is symmetric. Specifically, symmetry requires that

v̂(z) = −v̂(−z)

Γ(z) = 1− Γ(−z)
(2)

We take advantage of the symmetry of v̂ and simplify the notation as follows. Relabel

party 1’s strategy by defining it as the distance from 0. That is, we will replace x with

−x and let both players choose strategies in [0, 1]. Then, the expected payoff of party 2

becomes

u(x, y) = −v(x) · Γ(∆) + v(y) · (1− Γ(∆)) + β · (1− 2Γ(∆)) (1′)

where ∆ = (y−x)/2 and v is the restriction of v̂ to [0, 1]. We call v the policy valuation and

Γ the median distribution. Note that after this relabeling, a strategy x, y ∈ [0, 1] can be

identified with the degree of partisanship; x = 0 corresponds to the most moderate policy

4



while x = 1 corresponds to the most partisan policy. A symmetric strategy profile (x, y)

with x = y does not represent a situation in which the two parties choose identical policies

unless x = y = 0. Rather, it represents a situation in which the two parties’ policies are

equally partisan; that is, equally appealing to the mean of the median voter distribution.

We say that a function on set A ⊂ IRn is smooth if it has a twice continuously

differentiable extension to an open set that contains A. Throughout, we assume that Γ

and v are smooth, Γ is symmetric, v is strictly concave (i.e., v′′ < 0), Γ′ ≥ 0, v′ > 0. If

these properties are satisfied, we call the u defined in (1’) above a Wittman game. We let

U denote the set of Wittman games. Henceforth, we will simply say u or the game u when

we mean the one-shot zero-sum game ([0, 1], [0, 1],−u, u) for u ∈ U . We let ω = (ω1, ω2)

denote a generic (action) profile; that is, an element of the unit square Ω := [0, 1]× [0, 1].

Definition 1: Profile ω is an equilibrium of u if u(x, ω2) ≥ u(ω1, ω2) ≥ u(ω1, y) for all

(x, y); it is a strict equilibrium if both inequalities are strict whenever (x−ω1)·(y−ω2) ̸= 0.

Call u ∈ U regular if u22(x, y) < 0 and −u22(x, y) ≤ |u12(x, y)| for all x, y ∈ [0, 1]

where ui is the partial derivative of u with respect to its i’th argument and uij is the

partial derivative of uj with respect to its i’th argument. Hence, u is regular implies u is

strictly concave (convex) in y (x) and that players’ best response functions have slopes no

greater than 1 in absolute value.

Lemma 1: Every regular game has a unique equilibrium. This equilibrium is symmetric

and strict.

Proof: Since u is strictly concave in its second argument, for each x, there is a unique

ϕ(x) that maximizes u(x, ·). The function ϕ maps the unit interval into the unit interval

and, by the theorem of the maximum, is continuous. Therefore, ϕ has a fixed-point x∗.

Since u is symmetric, (x∗, x∗) is a symmetric equilibrium. Suppose (x, y) ̸= (x∗, x∗) is also

an equilibrium. Since the best response ϕ is single-valued, we must have x ̸= x∗ ̸= y. But

since u is a zero-sum game, (x, x∗) must also be an equilibrium, contradicting the single

valuedness of ϕ. Hence, (x∗, x∗) is the only equilibrium. That (x∗, x∗) is strict follows from

the fact that u is strictly concave in its second argument and strictly convex in its first.
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A non-regular Wittman game may have no equilibrium. In particular, if Γ is not log-

concave, then u need not have a (pure strategy) equilibrium. However, as we demonstrate

in Lemma 2 below, all Wittman games have a unique local equilibrium.

Definition 2: Profile ω is a local equilibrium of u if there is ϵ > 0 such that u(x, ω2) ≥

u(ω1, ω2) ≥ u(ω1, y) for all (x, y) in an ϵ−neighborhood of ω; it is a strict local equilibrium

if both inequalities are strict whenever (x− ω1) · (y − ω2) ̸= 0.

Lemma 2: A Wittman game has a unique local equilibrium. This local equilibrium is

symmetric and strict.

Proof: First, we will establish the existence of a symmetric strict local equilibrium. Let

u2 denote the derivative of u with respect to its second argument and let

ψ(x) := u2(x, x) =
1

2
v′(x)− (v(x) + β)Γ′(0)

Define ψ∗(x) := max{0,min{1, x + ψ(x)}}. The assumed properties of v imply that ψ

is continuous and decreasing. Therefore, ψ∗ must have a unique fixed-point x∗. At that

fixed-point, one of the following must hold: (i) ψ(0) < 0 and x∗ = 0; (ii) ψ(1) > 0 and

x∗ = 1 or (iii) ψ(x∗) = 0. If the unique fixed-point x∗ satisfies (i) or (ii), then clearly

(x∗, x∗) is a symmetric strict local equilibrium. If (iii) holds, let u22 denote the second

derivative of u with respect to its second argument. Since Γ is symmetric, Γ′′(0) = 0 and

therefore,

u22(x∗, x∗) =
1

2
v′′(x∗)− v′(x∗)Γ

′(0) < 0

ensuring that x∗ is a local best response to x∗ and therefore, (x∗, x∗) is a symmetric local

strict equilibrium.

To conclude the proof, we will show that there are no asymmetric local equilibria.

Consider any y ̸= x. Without loss of generality assume y > x. Note that

u2(x, y) = v′(y)(1− Γ(∆))− 1

2
(v(y) + v(x) + 2β)Γ′(∆)

u1(x, y) = −v′(x)Γ(∆) +
1

2
(v(y) + v(x) + 2β)Γ′(∆)

6



Since x < 1 and y > 0, the first order conditions imply

0 ≤ v′(y)(1− Γ(∆))− 1

2
(v(y) + v(x) + 2β)Γ′(∆)

0 ≥ v′(x)Γ(∆)− 1

2
(v(y) + v(x) + 2β)Γ′(∆)

and therefore,

v′(y)(1− Γ(∆)) ≥ v′(x)Γ(∆)

But y > x implies Γ(∆) > 1/2 and v′(y) ≤ v′(x), contradicting the above inequality.

Note that symmetry, in our notation, means that parties are choosing equally partisan

policies and hence, each party will win the election with the same probability 1/2. If

x = y = 0, then both parties are choosing the same, moderate, policy. However, if

0 < x = y, then the party’s policies differ; party 1 chooses the policy z1 = −x while party

2 chooses the policy z2 = x.

To illustrate our results, we will use the following example throughout the paper. Let

Γ(∆) =
1

2
+ 4∆3 (3)

The cumulative Γ defined in (3) above has the property that Γ′(0) = 0. For any policy

valuation v, the Wittman game with Γ as defined in (3) is not regular. The local equilibrium

is ω∗ = (1, 1) and, thus, parties choose their most partisan policies. Note that in this

equilibrium neither party has a local incentive to moderate because Γ′(0) = 0; that is,

at symmetric profiles the probability of winning is locally unresponsive to changes in the

policy. However, this local equilibrium is not an equilibrium: for β > 0, the best response

to x = 1 is a moderate policy y < 1. Thus, the game has no (pure strategy) equilibrium.

Note that if β is large, parties care almost exclusively about being in office. The limiting

case (as β → ∞) is not a Wittman game but a standard Downs-Hotelling game in which

parties care only about winning. That game has a unique equilibrium in which parties

choose x = y = 0.

This example illustrates that Wittman games may fail to have equilibria and, in

addition, that a small policy preference can lead to a local equilibrium that radically

departs from the standard Downs-Hotelling prediction of policy convergence.
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3. Dynamic Policy Games

In this section, we define a dynamic Wittman game in continuous time. In such a

game, parties choose policies at every moment in time and their instantaneous payoffs are

as described in the previous section. We constrain the speed with which parties can adjust

their policies by assuming that policy trajectories must be Lipschitz continuous with a fixed

Lipschitz constant. What matters in our setting is not the absolute adjustment speeds but

the relative adjustment speeds of the two parties. We begin with the assumption that

the two parties can adjust policies at the same maximal speed; that is, their strategies

must be Lipschitz continuous with respect to the same constant. We analyze the case of

asymmetric speeds in the section 6.

The continuous time formulation implies that an election takes place every instant.

We can interpret this as a setting in which national parties choose an ideological position

and contest many different elections at the national, state, and local level. However, the

assumption of frequent elections is inessential for our results. In section 5, we assume in-

frequent elections and establish results similar to those we obtained with frequent elections.

Thus, the continuous-time setting is important only in so far as it allows us to capture

party positioning in real time.

Parties’ strategies are real-valued functions, chosen every period k, that specify a

continuous evolution of their policies over the time interval kλ to (k + 1)λ. We assume

that parties choose these functions sequentially so that the second mover observes the

opponent’s choice. To preserve symmetry, the identity of the first mover changes in every

period.

Fix an initial policy profile o ∈ Ω, a utility u ∈ U , a period-length λ > 0 and a

common discount factor e−λr. At the start of each period, parties have their current

positions, ω ∈ Ω. In odd periods, k = 1, 3, . . . , party 1 moves first and decides how it

will adjust its policy during the next λ units of real-time. Hence, it chooses a function

f : [0, λ] → [0, 1] such that f(0) = ω1 and

|f(τ)− f(t)| ≤ |τ − t| (4)
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for all τ, t ∈ [0, λ]. Inequality (4) places bounds the speed of parties’ policy adjustments.

Let H denote the set of all functions f that satisfy inequality (4) and let H(x) be the

subset of that set with f(0) = x. After observing party 1’s adjustment function, party 2

chooses f̂ ∈ H(ω2). Parties reverse the order of moves in even periods.

There are two types of histories, histories that mark the beginning of a period and

histories that mark the middle of a period (when the first but not the second mover has

chosen). We refer to the first type of histories as tight histories and write P k for the tight

k−period histories. We call histories of the second type, flush histories and let Qk the set

of flush k−period histories. We consider the initial policy o a part of every history. In

particular, P 0 = Ω, Q0 = H are the tight and flush period 0−period histories.

For any two functions g, ĝ : [0, τ ] → [0, 1], let [gĝ] denote the function q : [0, τ ] → Ω

such that q(t) = (g(t), ĝ(t)). Then, a tight 1−period history is a function [f11 f
1
2 ] and

P 1 = H×H are the tight 1−period histories. The policy profile at the beginning of period

0 is [f11 f
1
2 ](0); the policy profile at the beginning of period 1 is [f11 f

1
2 ](λ). For k ≥ 1,

P k =
{
(f j1 , f

j
2 )

k
j=1 ∈ (H ×H)k : f ji (0) = f j−1

i (λ) ∀j = 2, . . . k ∀i = 1, 2
}

We identify p ∈ P k with the function p : [0, kλ] → Ω such that p(τ) = [f j1f
j
2 ](t) for

τ = jλ+ t and define ω̄(p) = p(kλ) as the policy at the end of that history. For k ≥ 1, the

flush k−period histories are

Qk =

{{
(p, f) : p ∈ P k, f ∈ H(ω̄1(p))

}
if k is even{

(p, f) : p ∈ P k, f ∈ H(ω̄2(p))
}

if k is odd

For (p, f) ∈ Qk we let ω̄(p, f) = ω̄(p). Then, let P1 =
∪

k≥0 P
2k, Q1 =

∪
k≥0Q

2k+1, P2 =∪
k≥0 P

2k+1, Q2 =
∪

k≥0Q
2k. The set of all histories after which player i moves is Mi =

Pi ∪Qi. Finally, let P := P1 ∪ P2, Q := Q1 ∪Q2, M :=M1 ∪M2.

The strategy set of player i is:

Σi = {σi :Mi → H|σi(ν) ∈ H(ω̄i(ν))}

and Σ = Σ1 × Σ2. A trajectory is a function θ = (θ1, θ2) : IR+ → Ω such that

|θi(τ)− θi(t)| ≤ |τ − t|
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for i = 1, 2. We use Θ to denote the set of trajectories and, for θ ∈ Θ, we let θk be the

implied k−period history. That is, θk is the element of P k such that θk(t) = θ(t) for all

t ≤ kλ. Let Θ(o) = {θ ∈ Θ | θ(0) = o} be the set of feasible trajectories given initial

policies o. We say that the strategy profile σ ∈ Σ induces the trajectory θ ∈ Θ(o) given

the policy profile o if

θn+1 = (θn, [σ1(θ
n)σ2(θ

n, σ1(θ
n))])

θn+2 = (θn+1, [σ1(θ
n+1, σ2(θ

n+1))σ2(θ
n+1)])

for all n = 2k, k = 0, 1, . . .. It is easy to verify that given any history ν ∈ M , a strategy

profile induces a unique trajectory θνσ.

At each time t an election is held. A party’s policy choice at time t determines its

chances of winning the election and also represents the policy the party implements should

it win the election. Therefore, player 2’s payoff for the trajectory θ is

U(θ) = r ·
∫ ∞

0

u(θ(t))e−rtdt

and player 1’s payoff is −U(θ). Henceforth, “payoff” means player 2’s payoff. A strategy

profile σ = (σ1, σ2) is a (subgame perfect) equilibrium if

U(θνσ̂) ≤ U(θνσ) ≤ U(θνσ′)

for all σ̂ = (σ1, σ̂2), σ
′ = (σ′

1, σ2), σ
′
1 ∈ Σ1, σ̂2 ∈ Σ2 and all ν ∈ M . We call (u, r, o, λ)

a discrete game. The theorem below establishes the existence of an equilibrium for the

discrete game. Its proof and all of the remaining proofs are in the appendix.

Theorem 1: Every discrete-time game has an equilibrium and a unique equilibrium

payoff.

The uniqueness of the equilibrium payoff in Theorem 1 is an implication of the zero

sum payoffs, the existence of a pure strategy equilibrium relies on the sequential structure

of the game.
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4. Policy Choice in Real-Time

In this section, we analyze a version of the policy game described above in which parties

can react to each other’s actions in real time; that is, when parties can adjust their policy

trajectories very frequently. Formally, a sequence of discrete games, (u, r, o, λn) converges

to real time if limλn = 0. The trajectory θ ∈ Θ(o) is a real-time trajectory of (u, r, o) if,

for every sequence games (u, r, o, λn) converging to real time, there exists a corresponding

sequence of equilibria {σn} such that {θoσn} converges to θ.3 Similarly, we say that v is

a real-time payoff of (u, r, o) if, for every sequence of games (u, r, o, λn) converging to real

time, there exists a corresponding sequence of equilibrium payoffs converging to v.

Real-time trajectories reflect situations in which parties can quickly respond to op-

ponent’s policy changes but the rate of their policy changes is constrained; that is, when

party 1 moves to a more partisan policy, party 2 can respond to this move almost in-

stantaneously, but the rate of the move and the rate of the response are at most 1. Let

∥ω − ω′∥ = max{|ω1 − ω′
1|, |ω2 − ω′

2|}.

Definition 4: The policy profile ω∗ is a steady-state if there is ϵ > 0 such that ∥ω∗−o∥ ≤

ϵ implies there is a real-time trajectory θ ∈ Θ(o) with θ(t) = ω∗ for all t ≥ 1.

If, in addition, the real time trajectory is unique, then ω∗ is a local strong steady

state. If the ϵ in the definition above can be set to 1, then ω∗ is a global steady-state or a

strong global steady state if real time trajectory is unique. Theorem 2, below, shows that

if u is a regular Wittman game, then every real time trajectory converges to its unique

equilibrium.

Theorem 2: The unique equilibrium of a regular game is the strong global steady-state.

The proof of Theorem 2 reveals that if u regular, then the corresponding the dynamic

game has a unique equilibrium. Moreover, this equilibrium converges to the unique equi-

librium of the static game in the minimal feasible time. That is, if ω∗ = (x∗, x∗) is the

unique equilibrium of the (regular) u, then at all times t such that t ≥ ∥ω − ω∗|∥, both

3 Convergence is in the sup norm.
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parties choose the policy x∗. Even if u is not regular, the local equilibrium is a strong

steady state:

Theorem 3: The unique local equilibrium of a Wittman game is a strong steady-state.

Theorem 3 shows that, given any Wittman game, if the initial state is close to the

local equilibrium, then policies converge to the local equilibrium and remain there. Thus,

despite the fact that the local equilibrium is not a static best response for either party,

real-time competition renders any deviation unprofitable.

To illustrate Theorem 3, consider the example above with Γ as defined in equation

(3) and β > 1. In the static game, at the local equilibrium ω∗ = (1, 1), each party has

an incentive to deviate to a moderate policy. For example, if a party deviates to policy

x = 0, then its payoff will be β instead of 0. Thus, when parties are mostly concerned

about holding office (i.e., β is large), and parties do not have the opportunity to respond

to their opponent’s policy changes (i.e., in a static game) the local equilibrium cannot

be sustained. However, in the real-time game, the local equilibrium remains the unique

outcome for the following reason. If a party were to deviate to a moderate policy it would

have to do so gradually and its opponent could react to the deviation. Hence, in the

dynamic game the question is whether or not the party can achieve a policy trajectory that

increases its payoff. In Lemma 3, in the appendix, we establish the following property for

all Wittman games: when parties choose policies with a similar degree of partisanship, the

party closer to the local equilibrium obtains a higher payoff than the party farther from

its local equilibrium action. As a consequence, the opposing party can counter a move

towards the moderate policy by “following” the deviator so the gap between the degree of

partisanship of the two policies remains small. Along this trajectory, the initial deviator

loses and the follower gains. Thus, there is a “second mover advantage” to any departure

from the local equilibrium which ensures that the local equilibrium remains the unique

equilibrium outcome.

Notice that the above described second mover advantage may only hold if parties

choose policies that exhibit a nearly identical degree of partisanship. For this reason,

Theorem 3 above holds in the real time limit but may fail away from it. When λ is large,

a deviating party may create sufficient distance between it and the opponent to gain the

advantage.
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5. Infrequent Elections

Next, we introduce a variation of our model in which elections take place at fixed,

discrete intervals. We let elections take place at integer valued times ℓ = 1, 2, . . .. As

in the previous two sections, parties adjust their policies continuously and their speed

of adjustment is constrained. However, payoffs depend only on the policies chosen at

integer-valued times.

The policy trajectories between elections; that is, in the interval (ℓ, ℓ+1) represent the

parties’ adjustments during an election campaign. The definition of histories and party

strategies remain unchanged from the previous section. The only difference is that we

assume that the period length λ is 1/m̄ where m̄ is a positive integer. Thus, between any

two elections parties can adjust their policy trajectories m̄-times. The ℓ−th election is

based on the parties’ policy choices at time ℓ and the winning party implements its policy

choice at that time. Therefore, player 2’s payoff from the trajectory θ is

Û(θ) =
(
1− e−r

) ∞∑
ℓ=1

u(θ(ℓ))e−(ℓ−1)r (5)

and player 1’s payoff is −Û(θ). Even though parties’ policy choices are payoff relevant

only at election time, it is essential that parties choose their policies in real time between

elections. This ensures that parties can react to the opponent’s policy adjustments and

adjust their own policies by the time the election is held.

We refer to the game with elections at integer times as the infrequent elections game.

It has the same parameters, (u, r, o, λ), as the discrete game defined in section 3. Theorem

2A in the appendix establishes the existence of equilibrium and the uniqueness of the

equilibrium payoff.4 The definitions of real-time trajectories and of steady states remain

unchanged. Theorem 4, below, shows that the local equilibrium is a steady state of the

infrequent elections game.

Theorem 4: The unique local equilibrium of a Wittman game is a global steady state

of the infrequent elections game.

4 Theorem 2A proves existence of stationary pure strategy equilibria. Stationarity means that the
strategy depends only on the current state, the opponent’s policy choice and the number of periods since
the last election.
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In one sense, Theorem 4 yields a weaker conclusion than Theorem 3: the local equi-

librium of a Wittman game is a steady state rather than a strong steady state, reflecting

the non-uniqueness of equilibria with infrequent elections. The reason for the difference is

that the policy trajectories between elections have no effect on payoffs and, therefore, mov-

ing away from the local steady state has no short-run payoff consequences. On the other

hand, there is a sense in which Theorem 4 strengthens Theorem 3: the local equilibrium

is a global a steady state; that is, it is a steady state irrespective of the initial condition.

Again, the reason is that the initial condition is not payoff relevant as long as parties have

enough time between elections to converge to the steady state.

Recall that we have normalized the parties’ maximal adjustment speed to 1. This

normalization is without loss of generality for Theorems 2 and 3 but not for Theorem

4. Specifically, Theorem 4 would continue to hold if the adjustment speed were faster

than 1 but may fail for slower adjustment speeds. With slow adjustment speeds, parties

may simply be unable to reach the local equilibrium between elections. In that case, we

would need to restrict the initial policy profile to an appropriate neighborhood of the

local equilibrium, as in Theorem 3. Thus, our definition of the infrequent elections game

implicitly assumes that parties have enough time between consecutive elections to reach

any desired policy.

Theorem 5, below, gives conditions under which the local equilibrium of the static

game is the unique policy that is implemented in every real-time trajectory of the infrequent

elections game. As we noted above, the fact that policy choices between elections are

not payoff relevant implies that real-time trajectories cannot be unique. For example, if

parties start out close to the local equilibrium they may choose to linger at the initial

state before converging to the local equilibrium; or, alternatively, they may converge to

the local equilibrium immediately. Under appropriate conditions, both scenarios can be

real-time trajectories. However, since both trajectories lead to the same election outcome,

this non-uniqueness does not affect voter or party payoffs and, therefore, is inessential. If

every real-time trajectory such that at each integer-valued time, both parties choose the

local equilibrium, then we say that the local equilibrium is the unique outcome. Theorem

5 shows that this is the case when parties care mostly about being in office; that is, when

β is sufficiently large.

14



We say that the outcome ω is the unique outcome for (Γ, v, β) ∈ U in the game with

infrequent elections if, for every r > 0 and for every real time trajectory θ of (Γ, v, β, r),

θ(ℓ) = ω for all ℓ = 1, 2, . . .

Theorem 5: For every Wittman game, there is β̄ > 0 such that β > β̄ implies that the

local equilibrium is the unique outcome of the game with infrequent elections.

When parties care mostly about winning, there is little scope for trading off a reduced

win probability for a more partisan policy. As a result, parties’ win probabilities must be

approximately equal in every election. This, in turn, implies that the two policies are of a

similar level of partisanship, that is, |x− y| must be small at the time of the election. As

we show in the appendix, the party closer to the local equilibrium receives a higher payoff

in the neighborhood of a symmetric profile. The proof of Theorem 5 uses this fact to show

that the only symmetric policy profile that can be sustained as an election outcome is the

local equilibrium. Thus, a large β implies that the policy profile must be symmetric which,

in turn, is the basis for the uniqueness argument in the proof of Theorem 5.

Even when parties care mostly about winning, the local equilibrium may lead to

partisan policies. Example (3) above, illustrates this point. In this example, the gains

from a deviation to the moderate policy increase with β. Therefore, it might seem that

moderate policies should be sustainable as an equilibrium outcome of the dynamic game.

However, this intuition does not apply when parties compete in real time; a move to a

more moderate policy leads to a corresponding move by the opposing party that ultimately

results in a small utility loss without significantly altering the party’s election probability.
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6. Asymmetric Adjustment Speeds and Equilibrium Policies

As we observed in the introduction, the constraint on the speed of policy adjustment

can be interpreted as a resource constraint. Put differently, a party’s adjustment speed

may be a proxy for its access to funding or the size of pool of activists. Well financed

parties may find it easier to communicate policy than their poorly financed competitors

and, thus, when parties differ in their access to resources we would expect them to face

different constraints in their adjustment speeds.

In this section, we consider parties with different resource constraint; that is, different

speeds of adjustment and investigate the effect of this asymmetry on election outcomes. As

in section 2, each party can adjust its policy at discrete times (periods) and each interval

between adjustments has length λ. Given a current policy positions ω ∈ Ω, party i chooses

a function f : [0, λ] → [0, 1] such that f(0) = ωi and

αi|f(τ)− f(t)| ≤ |τ − t| (4′)

for all τ, t ∈ [0, λ]. Inequality (4’) bounds the speed of a party’s policy adjustment at

1/αi. Up to this point, we have assumed that α1 = α2 = 1; in this section, we assume

1 = α1 ≥ α2 = α; that is, party 2 can adjust α times faster than party 1. As in the

previous section, elections are infrequent; they take place at time ℓ = 1, 2, . . .. Thus, the

payoff function is identical to the payoff function in the infrequent election game defined

in Equation (5). We refer to game described above as an asymmetric resource election.

Theorem 1 extends to asymmetric resource elections, as do the definitions of histories,

strategies and real-time trajectories.5

A straightforward case is when party 2 has an overwhelming advantage in adjustment

speed. In that case, party 2 can adapt optimally to party 1’s choice. That is, the resulting

policy choice is as in a two-stage game in which party 1 chooses first and then party 2

makes its choice after observing party 1’s action. Thus, the equilibrium payoff is

u0 := min
x∈[0,1]

max
y∈[0,1]

u(x, y)

5 Theorem 2A, in the appendix, proves the existence of a stationary pure strategy equilibrium for the
case of infrequent elections. The proof of Theorem 2A does not use the fact that party’s adjustment speeds
are identical and, therefore, would extend to the case of asymmetric adjustment speeds.
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If the game is regular, then

min
x∈[0,1]

max
y∈[0,1]

u(x, y) = max
x∈[0,1]

min
y∈[0,1]

u(x, y)

and, therefore, the difference in adjustment speeds is irrelevant. It is only for non-regular

Wittman games that the differential adjustment speeds play a role. As an illustration,

consider following Wittman game

v(x) = x

β = 1/2

Γ(∆) =
1

2
+ 4∆3

(6)

This game is not regular and has no equilibrium. Define x̂ ∈ [1/2, 1] such that u(x̂, 0) =

u(x̂, 1). For the parameters as specified in (6), x̂ ≈ .815 solves the minmax problem and

and u0 ≈ .084. Therefore, party 2 benefits from its faster adjustment speed. At x̂ = .814,

party 2 is indifferent between its most moderate and its most extreme policy and both are

best responses to x̂.6

Our final theorem provides payoff bounds for the asymmetric resource election. Define

Bα(z) = [0, 1] ∩ [z − α/2, z + α/2] and define:

uα = min
z∈[0,1]

max
y∈[0,1]

min
x∈Bα(z)

u(x, y)

We can interpret the quantity uα as the result of a three stage policy setting game. First,

party 1 chooses a position z, then party 2 chooses a policy and, finally, party 1 chooses a

policy in an α/2−neighborhood of z.

Theorem 6: Every real-time payoff of the asymmetric resource election is in [uα, u0].

To see why party 2 can achieve the lower bound in Theorem 6, consider the following

two-phase strategy for party 2: In phase 1, party 2 moves to the policy 1/2 and stays at

1/2 until phase 2. Phase 2 starts at t∗, where t∗ leaves party 2 with just enough time to

6 The utility function as specified in (6) is linear and, therefore, does not satisfy our assumption that
v′′ < 0. All the results below still hold for the utility function v(x) = x+ ϵ(x− x2) for ϵ sufficiently small.
We have chosen the linear example to simplify the exposition.
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get from 1/2 to any other policy in [0, 1] before the next election. During phase 2, party 2

moves as fast as it can to some y that maximizes minu(x, y) where the minimum is taken

over all policies that party 1 can reach before the next election starting from z, its position

at time t∗. Party 2 stays at policy y once it reaches it. Clearly, the best that party 1 can

do against this strategy is to choose z so as to minimize minu(x, y) over x’s that it can

reach from z after the start of phase 2. Note that t ≥ ℓ + 1 − α/2 − λ where ℓ + 1 is the

time of the next election which means that phase 2 will take at most α/2+λ units of time.

That is, party 1 will have at most α/2 + λ units of time to get from its policy position z

at t∗ to its policy position at election time ℓ+ 1. Hence party 1’s payoff is at best

uγ = min
z∈[0,1]

max
y∈[0,1]

min
x∈Bγ(z)

u(x, y)

for γ = α + 2λ. Continuity ensures that uγ converges to uα as λ converges to 0, yielding

the bound in Theorem 6.

With the parameters as specified in (6), the lower bound in Theorem 6 is tight for

α sufficiently small. That is, in any real-time trajectory player 2’s payoff is exactly uα.

To see why the bound is tight in the above example, consider the following strategy for

party 1. Between elections, party 1 chooses a trajectory that converges to a policy z that

satisfies

u(z − α/2, 0) = u(z + α/2, 1)

Once party 1 reaches z, it stays there until time ℓ − α/2. Between ℓ − α/2 and ℓ, party

1 chooses a trajectory that increases its policy whenever party 2’ policy is above 1/2 and

reduces its policy when party 2’s policy is below 1/2. Given this strategy of party 1, party

2 can do no better than uα, as we show in the appendix. This example establishes that

the lower bound of party 2’s payoff in Theorem 6 is tight.
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7. Conclusion

When parties compete in real time, the local equilibrium of the (static) Wittman

game emerges as a steady state of the corresponding dynamic game. In our setting, local

equilibria are symmetric; both parties choose equally partisan policies. In the interior case,

the local equilibrium (x∗, x∗) solves the following simple equation:

v′(x∗) = 2Γ′(0)(v(x∗) + β)

Thus, the distribution of voter ideal points Γ affects the local equilibrium through the

value Γ′(0); that is, the change in party 1’s win probability if it marginally moderates it’s

policy at a symmetric profile. The quantity Γ′(0) is a proxy for the probability that the

median turns out to be the voter who favors the most moderate policy (of either party).

If this probability is small, then the local equilibrium will lead to more partisan policies

(more polarization) than if this probability is large. To confirm this intuition, recall the

example of section 2, with Γ (defined in equation (3)) such that Γ′(0) = 0. The local

equilibrium for this example is (1, 1); the most partisan policy profile. Hence, our model

relates polarization to parties’ estimates of the probability that the median voter will favor

the most moderate policy.

Note that properties of Γ other than the slope at 0 do not affect the local equilibrium

and hence do not affect the real-time steady state. For example, consider any bimodal

distribution Γ such that the most likely realization of the median is in the range of moderate

left policies (−z,−z/2) or in the range of moderate right policies (z/2, z) (where 0 < z ≤ 1)

but the probability that the median is at 0 is small. In that case, the value of z is immaterial

for the election outcome and, in this sense, electoral competition in real time is unresponsive

to changes in voter preferences.
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8. Appendix A: Proof of Theorem 1

First, we will state and prove the following version of the principle of optimality. A

dynamic decision problem is a collection α = (δ, w, b,X, T, S) where X and S are arbitrary

sets, δ ∈ (0, 1) is the discount factor, w : X × S → IR is the utility function, the function b

from S to the set of all nonempty subsets of X is the feasibility function, and T : X×S → S

is the transition rule.

Let X∗(s) denote the set of all sequences {xn} in X such that xn ∈ b(sn−1) for all

n > 1, where s1 = s and sn = T (xn−1, sn−1). For any sequence ξ = {xn} ∈ X∗(s), define

the sequence {sn} as follows: s1 = s and, for all n > 1, sn = T (xn−1, sn−1). Finally, for

ξ = {xn}, let

Wα(ξ, s) =
∑
n

w(xn, sn)δ
n−1

A decision rule is a function ρ : S → X such that ρ(s) ∈ b(s) for all s ∈ S. For any

decision rule ρ and s ∈ S, construct the sequence {(xn, sn)} as follows: s1 = s, x1 = ρ(s),

sn = T (xn−1, sn−1) and xn = ρ(sn). Then, let ξsρ = {xn}.

We call the function W ∗ the value function if W ∗(s) = maxξ∈X∗(s)Wα(ξ, s). Clearly,

there can be at most one value function. We say that the policy ρ is optimal ifWα(ξsρ, s) =

W ∗(s) for all s ∈ S.

Definition: A bounded function Ŵ : S → IR such that

Ŵ (s) = max
x∈b(s)

w(x, s) + δŴ (T (x, s)) for all s ∈ S

is a recursive value. A policy ρ such that ρ(s) ∈ argmaxx∈b(s)[w(x, s) + δŴ (s)] is unim-

provable for the recursive value Ŵ .

Optimality Lemma: (i) If Ŵ is a recursive value, then it is the value. (ii) A policy is

optimal if it is unimprovable for some recursive value.

Proof: (i) Let Ŵ be a recursive value and for s ∈ S, pick ρ(s) = argmaxx∈b(s) w(x, s) +

δŴ (T (x, s)).
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We claim that Ŵ (s) = Wα(ξsρ, s) for all s. If not, let ϵ = sups |Ŵ (s) −Wα(ξsρ, s)|.

Since bothWα and Ŵ are bounded, ϵ <∞. Choose s′ such that sups |Ŵ (s)−Wα(ξsρ, s)|−

(1− δ)ϵ < |Ŵ (s′)−Wα(ξs′ρ, s
′)|. Then,

|Ŵ (s′)−Wα(ξs′ρ, s
′)| = δ|Ŵ (T (x, s′))−Wα(ξρT (x,s′)), T (x, s

′)| ≤ δϵ

and hence δϵ+ (1− δ)ϵ > ϵ, a contradiction.

Let W o(s) = supξ∈X(s)Wα(ξ, s) for all s. Since w is bounded, W o(s) is well-defined

and the function W o is itself bounded.

To see that W o(s) ≥ Ŵ (s), assume the contrary and choose ϵ such that 0 < ϵ <

(1−δ) sups∈S [Ŵ (s)−W o(s)] and s′ such that sups∈S [Ŵ (s)−W o(s)]−ϵ < Ŵ (s′)−W o(s′).

Let y solve maxx∈b(s′)[w(x, s
′) + δŴ (T (x, s′))]. Then, W o(s′) ≥ w(y, s′) + δW o(T (y, s′))

and hence Ŵ (s′) − W o(s′) ≤ δ[Ŵ (T (y, s′)) − W o(T (y, s′)] ≤ δ sups∈S [Ŵ (s) − W o(s)].

Thus, we have

sup
s∈S

[Ŵ (s)−W o(s)]− ϵ < Ŵ (s′)−W o(s′) ≤ δ sup
s∈S

[Ŵ (s)−W o(s)]

a contradiction.

To proveW o(s) ≤ Ŵ (s), again we assume the contrary and choose ϵ such that 0 < ϵ <

1−δ
2 sups∈S [W

o(s)− Ŵ (s)] and s′ such that sups∈S [W
o(s)−W ∗(s)]− ϵ < W o(s′)− Ŵ (s′).

Choose {xn} ∈ X(s′) such thatWα({xn}, s′) > W o(s′)−ϵ. Then, since Ŵ (s′) ≥ w(x1, s
′)+

δŴ (T (x1, s
′)) and w(x1, s

′)+δW o(T (x1, s
′)) ≤Wα({xn}, s′), we haveW o(s′)−Ŵ (s′)−ϵ ≤

δ[W o(T (x1, s
′))− Ŵ (T (x1, s

′)] ≤ sups∈S [W
o(s)− Ŵ (s)]. Therefore,

sup
s∈S

[W o(s)− Ŵ (s)]− ϵ < W o(s′)− Ŵ (s′) ≤ δ sup
s∈S

[W o(s)− Ŵ (s)] + ϵ

a contradiction. So, Ŵ = W o. By the claim above, Wα(ξsρ, s) = Ŵ (s) = W o(s) and

hence, W ∗ = Ŵ =W o proving (i).

(ii) Suppose ρ is unimprovable for some recursive value. Then, by (i), it is unimprovable

for W ∗. Let {xn} = ξsρ, s1 = s, sn = T (xn−1, sn−1) and, since W
∗ is a recursive value,

W ∗(s) =
m∑

n=1

w(xn, sn)δ
n−1 + δmW ∗(sm+1)
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Since W ∗ is bounded, we conclude that W ∗(s) =
∑∞

n=1 w(xn, sn)δ
n−1 =Wα(ξsρ, s).

Stationary Strategies

Let j = 3− i and for i = 1, 2, define Mi = Ω∪{(ω, f) ∈ Ω×H | f(0) = ωj}. Then, let

Di be the set of all function di : Mi → H such that di(ω) ∈ H(ωi) and di(ω, f) ∈ H(ωi)

for all ω, f . A strategy σi for player i is stationary if there is a di ∈ Di such that

σi(p) = di(ω̄(p)) for p ∈ Pi

σi(p, f) = di(ω̄(p), f) for (p, f) ∈ Qi

Clearly, there is a one-to-one correspondence between the set of stationary strategies of

player i and Di.

8.1 Proof of Theorem 1:

We will prove the following stronger version of Theorem 1:

Theorem 1A: A discrete-time game (with frequent elections) has a stationary equilib-

rium and a unique equilibrium payoff.

Proof: Let V be the set of all bounded continuous functions on Ω. This set, endowed

with the sup norm, is a complete metric space. Define

JV (f1, f2) =

∫ λ

t=0

u(f1(t), f2(t))e
−rtdt+ e−rλV (f1(λ), f2(λ))

Q1
V (f1, y) = max

f2∈H(y)
JV (f1, f2)

Q2
V (f2, x) = min

f1∈H(x)
JV (f1, f2)

Λ1
V (ω) = min

f1∈H(ω1)
Q1

V (f1, ω2)

Λ2
V (ω) = max

f2∈H(ω2)
Q2

V (f2, ω1)

ΛV = Λ1
Λ2

V

First, we show that Λ2
V (ω) is well-defined and that the function Λ2

V is in V. Since every

function in H is 1-Lipschitz, H is compact by the Ascoli-Arzela Theorem as are the sets

H(x) for x ∈ [0, 1]. The function JV (·) is continuous as is the correspondences C1, C2

22



defined by C1(f, x) = C2(x, f) = H(x). Hence, the functions JV (f, ·) and −JV (·, f) attain
their suprema on H(x) and, by Berge’s Maximum Theorem, the function Qi is continuous

for i = 1, 2. The same arguments ensure that Λ1
V is well-defined and continuous.

Next, we will show that V → ΛV is a contraction mapping. Suppose f2 solves

maxQ1(f, ω1) subject to f ∈ H(ω2) and f1 solves min J(f, f2) subject to f ∈ H(ω1)

for some V ∈ V and consider Vo ∈ V. Then,

Λ2
V (ω)− Λ2

Vo
(ω) ≤ e−rλ(V (f1(ω1), f2(ω2))− Vo(f1(ω1), f2(ω2)) ≤ e−rλ∥V − Vo∥

A symmetric argument ensures Λ2
Vo
(ω) − Λ2

V (ω) ≤ e−rλ∥V − Vo∥ for all ω and hence

∥Λ2
V − Λ2

Vo
∥ ≤ e−rλ∥V − Vo∥. Again by symmetry ∥Λ1

V − Λ1
Vo
∥ ≤ e−r∥V − Vo∥ and it

follows that ∥ΛV −ΛVo∥ ≤ e−2rλ∥V −Vo∥ proving that V → ΛV is a contraction mapping.

Then, by Banach’s Fixed-Point Theorem, there is a unique V ∈ V such that ΛV = V .

For the remainder of this proof, let V1 = V and V2 = Λ2
V1
. Choose D1, D2 such that

D1(f, ω, j) ∈


arg min

f1∈H(ω1)
Q1

V2
(f1, ω2) if j = 1

arg min
f1∈H(ω1)

JV1(f1, f) if j = 2.

D2(f, ω, j) ∈


arg max

f2∈H(ω2)
Q2

V1
(f2, ω1) if j = 2

arg max
f2∈H(ω2)

JV2(f, f2) if j = 1.

Let α = (δ, b, w,X, T, S, δ) be the following dynamic decision problem for party 1: δ = e−rλ,

S = Ω× {1, 2}, X = H, b(ω, f, j) = H(ω2) and

w(f, ω, j) = −r
∫ λ

t=0

u(f(t), D2(f, ω, j)(t))e
−rtdt

T (f, ω, j) = (ω̄(f,D2(f, ω, j)), 3− j)

It is easy to verify that Ŵ : S → IR such that

Ŵ (ω, j) =

{
V1 if j = 1
V2 if j = 2

is a recursive value for α. Then, part (ii) of the Optimality Lemma implies that Ŵ is the

value for α. Define ρ1 such that

ρ1(ω, j) ∈


arg min

f1∈H(ω1)
Q1

V2
(f1, ω2) if j = 1

arg min
f1∈H(ω1)

JV1(f1, D2(f1, ω, j)) if j = 2.
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By construction, ρ1 is unimprovable for the recursive value Ŵ ; hence, part (ii) of the

Optimality Lemma implies that ρ1 is an optimal policy. Define the stationary strategy

di, i = 1, 2 as follows: di(ω) = Di(f, ω, i) (and note that Di is independent of the first

argument in state (ω, i)) and di(p, f) = Di(f, ω̄(p), 3− i). Since ρ1 is an optimal policy, it

follows that d1 is a best response to d2. A symmetric argument ensures that d2 is a best

response to d1 and hence (d1, d2) is an equilibrium of (u, r, ω, λ) for every ω ∈ Ω.

To prove the uniqueness of the equilibrium payoff, assume that (σ1, σ2) and (σ̂1, σ̂2)

are two equilibrium strategies. Then, U(σ1, σ2) ≤ U(σ̂1, σ2) ≤ U(σ, σ̂2) ≤ U(σ̂1, σ̂2); that

is, U(σ1, σ2) ≤ U(σ̂1, σ̂2). A symmetric argument yields the reverse inequality and hence

U(σ1, σ2) = U(σ̂1, σ̂2).

9. Proofs of Theorems 2 and 3

Let ω∗ = (x∗, x∗) be the unique local equilibrium, the existence of which is guaranteed

by Lemma 2. Let Nϵ := {(x, y) ∈ Ω : max{|x − x∗|, |y − x∗|} ≤ ϵ} and, for u ∈ U , let uϵ
denote the restriction of u to Nϵ.

Lemma 3: Let u ∈ U . Then, there exists ϵ > 0 such that (i) uϵ is regular and (ii)

(x− x∗)(y − x∗) ≥ 0, |x− x∗| > |y − x∗| and ϵ ≥ |y − x| imply u(x, y) > 0.

Proof: (i) Note that u2(x, y) = v′(y)(1−Γ(∆))−(v(x)+v(y)+2β)Γ′(∆)/2 and, therefore,

Γ′ > 0,Γ′′(0) = 0,Γ(0) = 1/2 imply

u12(x, x) = v′(x)Γ′(0)/2− v′(x)Γ′(0)/2 + Γ′′(0)(v(x) + v(y) + 2β) = 0

u22(x, x) = v′′(y)/2− v′(y)Γ′(0) < 0

Since v′′, v′,Γ′,Γ′′ are continuous functions, part (i) follows.

(ii) Choose ϵo > 0 such that uϵo is regular. Suppose |x− x∗| < ϵo and the hypotheses

(of part (ii) of the lemma) are satisfied for ϵ = ϵo. Then, u(x, x∗) > 0 and u(x, x) = 0 and,

therefore, concavity of u implies that u(x, y) > 0.

To conclude the proof, we will (1) find ϵ1, ϵ2 ∈ (0, ϵo] such that if the hypotheses are

satisfied for ϵ = ϵ1 (ϵ = ϵ2) and x ≤ x∗ − ϵo (x ≥ x∗ + ϵo), then u(x, y) > 0 and (2) set

ϵ = min{ϵ1, ϵ2}.
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Since the two cases are symmetric, we will only consider x ≤ x∗ − ϵo. Recall that

u2(x, x) = v′(x)/2 − (v(x) + β)Γ′(0) and since u2(x∗, x∗) = 0, the concavity and mono-

tonicity of v implies u2(x, x) > 0 for x < x∗. Let lo = [0, x∗ − ϵo] and

I = {(x, x) : x ∈ lo}

C = {(x, y) : x ∈ lo and u2(x, y) = 0} ∪ {(x∗ − ϵo, x∗)}

Since u2 is continuous, C is compact. Hence, I, C are nonempty, disjoint compact sets.

It follows that ϵ1 := min{∥ω − ω′∥ : ω ∈ I, ω′ ∈ C} > 0. Clearly, ϵ1 ≤ ϵo and, since

u2(x, x) > 0, we have u(x, y) > 0 whenever x ≤ x∗− ϵo, y ∈ [x, x+ ϵ1]. Hence, (x−x∗)(y−

x∗) ≥ 0, |x− x∗| > |y − x∗| and ϵ1 ≥ |y − x| imply u(x, y) > 0 for x ≤ x∗ − ϵo.

Assume uϵ is regular, let lϵ = [0, 1] ∩ [x∗ − ϵ, x∗ + ϵ] and, for x ∈ lϵ, define

ϕϵ(x) = arg max
y∈Nϵ

u(x, y)

Note that if u is regular, then ϕ1 is party 2’s best response function and, since uϵ is regular,

ϕϵ is well-defined. Moreover, (x, ϕϵ(x)), (ϕϵ(x), x) ∈ Nϵ whenever x ∈ lϵ. Hence, with some

abuse of terminology, we will call ϕϵ the best-response function whenever uϵ is regular.

We will construct a special class of trajectories to use in the proof of Theorem 2-5.

We call these, rush-to-the-best-response (RBR) trajectories. In an RBR trajectory both

parties try to reach their respective best response functions ϕϵ as quickly as possible,

assuming their rival will do the same. Once the first of the two parties reaches its best

response, it continues at a pace that keeps it on the best response conditional on the rival

continuing to move, as fast as possible, towards its own best response. The rival reaches

ϕϵ at the local equilibrium after which both parties stay put forever.

Formally: let Ω0 = {ω∗} where ω∗ = (x∗, x∗) is the local equilibrium. Let Ωϵ
i denote

the graph of the party i’s best response function, excluding ω∗. That is, Ωϵ
1 := {ω ∈ Ω :

ω1 = ϕϵ(ω2)}\Ω0 and Ωϵ
2 = {ω ∈ Ω : ω2 = ϕϵ(ω1)}\Ω0. Finally, Ωϵ

3 := Ω\(Ω0 ∪ Ωϵ
1 ∪ Ωϵ

2).

The four sets, Ωϵ
0,Ω

ϵ
1,Ω

ϵ
2,Ω

ϵ
3, form a partition of Ω. Then, the RBR trajectories are defined

as follows:
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For i, j = 1, 2, j ̸= i and t ≥ 0, let

υϵi (o) =


1 if oi < ϕϵ(oj)
0 if oi = ϕϵ(oj)

−1 if oi > ϕϵ(oj)

We let min ∅ = ∞ and define,

Y ϵ
i (o, t) = oi + υϵi (o) · t

Y ϵ(o, t) = (Y ϵ
1 (o, t), Y

ϵ
2 (o, t))

τ ϵi (o) = min{t : Y ϵ
i (o, t) = x∗}

τ ϵ(o) = min{t : Y ϵ(o, t) /∈ Ωϵ
3}

Then, define Zϵ : Ω× IR+ → Ω (where Z := Z1) as follows:

For o ∈ Ωϵ
0, Z

ϵ(o, t) = o for all t.

For o ∈ Ωϵ
i and j = 3− i, Zϵ

j (o, t) = Y ϵ
j (o, t) and Z

ϵ
i (o, t) = ϕϵ(Z

ϵ
j (o, t)) for t ≤ τ ϵi (o);

Zϵ(o, t) = (x∗, x∗) for t > τ ϵi (o).

For o ∈ Ωϵ
3, Z

ϵ(o, t) = Y ϵ(o, t) for t ≤ τ ϵ(o). Then, if Zϵ(o, τ ϵ(o)) ∈ Ωϵ
k for k = 0, 1, 2,

let Zϵ(o, t) = Zϵ(Zϵ(o, τ ϵ(o)), t− τ ϵ(o)) for all t > τ ϵ(o); otherwise, Zϵ(o, t) = Zϵ(o, τ ϵ(o))

for all t > τ ϵ(o).

Lemma 4: Assume uϵ is regular, o ∈ Nϵ, and let θ1, θ2 be trajectories such that θ1(0) =

θ2(0) = o and θii(t) = Zϵ
i (o, t) and θ(t) ∈ Nϵ for all t ∈ [0, T ]. Then:

(i) Zϵ(o, t) ∈ Nϵ for all t and Zϵ(o, t) = ω∗ for all t ≥ ∥o− ω∗∥.

(ii) ∫ T

0

e−rtu(θ1(t))dt ≤
∫ T

0

e−rtu(Zϵ(o, t))dt ≤
∫ T

0

e−rtu(θ2(t))dt (A1)

Moreover, the first inequality is strict if Zϵ(o, t) ̸= θ1(t) for some t ∈ [0, T ] and the second

inequality is strict if Zϵ(o, t) ̸= θ2(t) for some t ∈ [0, T ].

Proof: Part (i): First, we show that Zϵ(o, t) = ω∗ = (x∗, x∗) for all t ≥ ∥o − ω∗∥. If

o ∈ Ωϵ
0, the Lemma is immediate. For o ∈ Ωϵ

i , at every t, party 3 − i is moving as fast

as it can towards its best response function while party i is moving with just the right

speed to ensure that the two parties stay on the graph of party i’s best response. This
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continues until party i reaches x∗ at which point the parties are at the local equilibrium

ω∗. Therefore, they reach ω∗ no later than |oi − x∗| ≤ ∥o − ω∗∥. If o ∈ Ω3, then both

parties are moving towards their best response functions. When the first party reaches its

best response, we are in the case considered above. Hence, the total time until the parties

reach ω∗ is no greater than ∥o− ω∗∥.

Call a party that reaches its best response at least as early as its opponent, an advan-

taged party and its opponent a disadvantaged party. Without loss of generality, assume

that party 2 is an advantaged party and that party 1 is a disadvantaged party. Note that

party 1 always moves as fast as possible towards its best response, reaches it at x∗, no

sooner than party 2, and starts off within ϵ of x∗. Since both parties stay at x∗ once they

reach it, it follows Z(o, t) = (x∗, x∗) for all t ≥ ϵ.

Next, we show that Zϵ(o, t) ∈ Nϵ for all t ≤ ϵ. We noted above, that party 1, a

disadvantaged party, is always is moving towards x∗. Thus, Zϵ
1(o, ·) either monotonically

increases or monotonically decreases to x∗ and, therefore, |Zϵ
1(o, ·) − x∗| ≤ ϵ for all t. To

complete the argument, we must show that party 2, the advantaged party, always stays

within ϵ of x∗ as well. But this is immediate: since party 2 reaches x∗ by t = ϵ, it must be

within ϵ of x∗ at t ≤ ϵ.

Part (ii): Since uϵ is regular, the best responses are best responses to all x ∈ [x∗ −

ϵ, x∗ + ϵ]. Then, regularity ensures that for all i ̸= j, ω, ω̂ ∈ Nϵ such that ωj = ω̂j ,

(ωi − x∗)(ω̂i − x∗) ≥ 0,

|ωi − ϕϵ(ωj)| ≤ |ω̂i − ϕϵ(ωj)| implies u(ω) ≥ u(ω̂)

and the second inequality is strict whenever the first one is strict. It follows that the second

inequality in (A1) holds and is strict whenever θ2(t) ̸= Z(o, t) for some t ≤ T . For the first

inequality, note that, if θ2(t) ̸= x∗ for all t ≤ T , the argument of the previous paragraph

ensures that u(θ1(t)) < u(Z(o, t)) whenever θ1(t) ̸= Z(o, t). If θ2(t) = x∗ for some t′ ≤ T ,

let τ be the smallest such t′ and let t∗ be the first time t at which party 2 reaches its

best response; that is, the first t such that Z2(o, t) = ϕϵ(Z1(o, t)). The argument of the

previous paragraph ensures that u(θ(t)) ≤ u(Z(o, t) for all t ≤ τ and that this inequality

is strict at t∗ whenever θ12(t) ̸= Z2(o, t) for some t ≤ t∗. For t > t∗, recall that Z2(o, t)
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is the best response to Z1(o, t), and therefore, u(θ(t)) ≤ u(Z(o, t) for all t > t∗ and this

inequality is strict whenever θ22(t) ̸= Z2(o, t). This proves that the first inequality holds

and holds strictly if θ22(t) ̸= Z2(o, t) at some t ≤ T .

Proof of Theorem 2: Define di(ω) and di(ω, f) such that di(ω, f)(t) = di(ω)(t) =

Zi(ω, t) for all t ∈ [0, λ] and all ω ∈ Ω, f ∈ H. By Lemma 3, di(ω) ∈ H and hence

d = (d1, d2) is a stationary strategy. We claim that d is the unique equilibrium of (u, r, o, λ).

Let d∗ = (d∗1, d
∗
2) be a stationary equilibrium, the existence of which is ensured by Theorem

1A.

Since u is regular, so is uϵ for ϵ = 1. For any σ1, σ2, let σ
1 = (σ1, d2) and σ

2 = (d1, σ2).

Then, part (ii) of Lemma 4 implies that

U(θoσ2) ≤ U(θod) ≤ U(θoσ1) (A2)

and

U(θoσ2) < U(θod) < U(θoσ1) (A3)

whenever θoσ1 ̸= θod ̸= θoσ2 . Applying (A2) to σ1 = (d∗1, d2) and σ
2 = (d1, d

∗
2) reveals that

U(θod∗) = U(Z(o, ·)) for all o and hence, d∗ is an equilibrium of (u, r, o, λ) for all o ∈ Ω.

Then, (A3) implies d must be the unique equilibrium of (u, r, o, λ). Part (i) of Lemma 4

implies that Z(o, t) = ω∗ for all t ≥ 1 completing the proof of the claim.

Note that Z(o, ·) is independent of λ and hence it is the real-time trajectory of (u, r, o)

by the claim above. Then, part (i) of Lemma 4 ensures that (x∗, x∗) is the strong steady-

state.

Next, we define the stationary strategy dni , i = 1, 2, referred to as the i’s pursuit

strategy below. With the pursuit strategy, i moves towards the policy j selected at the

end of the last period; that is, at the end of the last tight history, whenever the distance

between the end-of-period policy positions is greater than (n − 1)λ and moves toward x∗

when this distance is no greater than (n − 1)λ. Formally, define hωi : [0, λ] → [0, 1] as

follows:

hωi (t) =

{
min{ωi + t, x∗} if ωi ≤ x∗
max{ωi − t, x∗} if ωi > x∗

28



For j = 3− i, and n ≥ 3, define dni (ω) ∈ H(ωi) as follows

dni (ω)(t) =


ωi + t if ωi < ωj − (n− 1)λ
hωi (t) if |ωj − ωi| ≤ (n− 1)λ
ωi − t if ωi > ωj + (n− 1)λ

Let dni (ω, f) = dni (ω) for all (ω, f) such that ωj = f(λ). Let σn
j the dynamic discrete game

strategy associated with dni ; that is, σn
i (p) = dni (ω̄(p)) and σn

i (p, f) = dni (ω(p), f) for all

histories p ∈ Pi and (p, f) ∈ Qi.

Lemma 5: Assume n > 2 and λ < 1/3. Let σj = σn
j , j ̸= i, θ = θoσ and t ≥ 1, then one

of the following two conditions must hold:

x∗ ≤ θj(t) ≤ θi(t) ≤ θj(t) + (n+ 1)λ (a)

θj(t)− (n+ 1)λ ≤ θi(t) ≤ θj(t) ≤ x∗ (b)

Moreover, if θ(t) satisfies (a) or (b), then θ(t′) satisfies (a) or (b) for all t′ ≥ t.

Proof: Suppose (a) holds at t = kλ for some k = 0, 1, . . .. Then, verifying that either (a)

holds or (b) holds for all t = (k + 1)λ is straightforward. Hence, by induction we have:

if (a) or (b) hold for some t = kλ, then (a) or (b) hold at t′ = k′λ for t′ ≥ t. Next, we

will show that if (a) or (b) holds at t = kλ, then (a) or (b) hold must also hold at kλ+ ϵ

for all ϵ ∈ (0, λ). By symmetry, we can assume, without loss of generality, that (a) holds

at t = kλ. If θj(kλ) < θi(kλ) + (n − 1)λ, the desired conclusion is obvious. Otherwise,

either x∗ ≥ θj(kλ)−λ, in which case θj(kλ+ ϵ) = x∗ and the desired conclusion follows, or

x∗ < θj(kλ)− λ, in which case θj(kλ+ ϵ) = θj(kλ)− λϵ and, again the desired conclusion

follows.

So, to conclude the assertion, it is enough to show that if (a) or (b) holds at t =

kλ + ϵ for ϵ ∈ (0, λ), then (a) or (b) must also hold at either kλ or (k + 1)λ. Again,

we assume without loss of generality, that (a) holds at t. If θj(kλ) = θj(kλ + ϵ), then

θj(kλ) = x∗ = θj(kλ + ϵ) and hence (a) or (b) must hold at kλ. If θj(kλ) < θj(kλ + ϵ),

then either θj((k + 1)λ) = x∗ and again, we are done or θj(kλ) < θi(kλ) + (n − 1)k and

hence t = (k+1)λ satisfies (a). Finally, if θj(kλ) > θj(kλ+ϵ), then either θj((k+1)λ) = x∗

and again, we are done or (a) still holds at t = (k + 1)λ.
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To conclude the proof of the lemma, we will show that there is some t ≤ 1 at which

either (a) or (b) holds. We will consider only the case in which oj ≤ oi. Let m be the first

k such that θj(kλ) ≥ θi(kλ)− (n− 1)λ. Clearly, mλ ≤ 1. If x∗ ≤ θj(mλ), then (a) holds

at mλ and we are done. If θj(kλ) < x∗ ≤ θi(kλ), let m
∗ be the smallest integer such that

x∗ ≤ m∗λ. Clearly, m∗ > m and we must have θj(m
∗λ) = x∗ and hence at m∗λ, (a) or

(b) holds; or at some k such that m < k < m∗, (b) holds.

Proof of Theorem 3: Choose ϵ > 0 so that uϵ is regular and (ii) of Lemma 3 holds.

Without loss of generality, let λ < ϵ/6. Then, choose n, an integer multiple of 3, such that

n ≤ ϵ/λ − 1. Define,

ϵ1 = (n− 1)λ

m = n/3

ϵ2 = mλ

Note that 0 < 2ϵ2 ≤ ϵ1 ≤ ϵ and (n+ 1)λ ≤ ϵ.

Let o ∈ Nϵ2 be the initial state and note that since ϵ2 ≤ ϵ, (ii) of Lemma 3 holds.

Define the following (non-stationary) strategy σi. This strategy has two phases.

Phase 1: The first m − 1 periods comprise phase 1 and in that phase σi follows Zi(o, ·)
irrespective of j’s action. That is: for p ∈ P k

i and for (p, f) ∈ Qk
i such that 0 ≤ k < m

and t ∈ [kλ, (k + 1)λ]

σi(p)(t) = σi(p, f)(t) = Zϵ
i (o, t)

Phase 2: Phase 2 consists of all periods m and later. In phase 2, player i plays her pursuit

strategy; that is, for p ∈ P k
i and for (p, f) ∈ Qk

i such that k ≥ m

σi(p) = σi(p, f) = dni (ω̄(p)).

Since Zϵ(o, t) = Zϵ2(o, t) for all o ∈ Nϵ2 ⊂ Nϵ, part (i) of Lemma 4 implies that

Zϵ(o, t) = (x∗, x∗) for all t ≥ ϵ2. Let σ = (σ∗
1 , σ

∗
2) be an equilibrium of (u, r, o, λ). To

complete the proof of Theorem 3, we will show that θoσ∗(t) = Zϵ(o, t) for all t.

Let σ̂ = (σ∗
1 , σ2), let σ = (σ1, σ2) and let σ̃ = (σ1, σ

∗
2). Since o ∈ Nϵ2 and mλ = ϵ2 ≤

ϵ1/2, θoσ′(t) ∈ Nϵ1 for all t ≤ mλ and all σ′ ∈ Σ. Therefore, part (ii) of Lemma 4 implies∫ mλ

0

e−rtu(θoσ̃(t)) ≤
∫ mλ

0

e−rtu(θoσ∗(t)) ≤
∫ mλ

0

e−rtu(θoσ̂(t))
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Let (x, y) = θoσ̂(mλ)). First, note that y = x∗ and since (x, y) ∈ Nϵ1 = N(n−1)λ, (x, y)

satisfies (a) or (b) in Lemma 5. Then, Lemmas 3 and 5 imply u(θoσ̂(t)) ≥ 0 for t ≥ mλ.

An analogous argument for player 1 implies that u(θoσ̃(t)) ≤ 0 for t ≥ mλ. Since σ∗ is an

equilibrium, it follows that∫ ∞

0

e−rtu(θoσ∗(t)) =

∫ ∞

0

e−rtu(θoσ(t))

Since θoσ = Zϵ2(o, ·), Lemma 4 and the above equality imply that θoσ∗ = Zϵ2(o, ·), as

desired.

10. Proofs of Theorems 4-6

For the case with infrequent elections we must modify the definition of a stationary

strategy. Let m̄ = 1/λ. A stationary strategy depends on the state ω ∈ Ω, the number of

periods since the last election m ∈ N = {1, . . . , m̄}, and (if p ∈ Qk
i ) on the f ∈ H chosen

by the opponent. Let j = 3− i and, for i = 1, 2, let Mi = Ω∪{(ω, f) ∈ Ω×H | f(0) = ωj}

be as above. Let

Di := {di :Mi ×N → H : di(ω, f,m) ∈ H(ωi), di(ω,m) ∈ H(ωi)}

A strategy σi for player i is stationary if there is a di ∈ Di such that for all k = 1, . . . ,

σi(p) = di(ω̄(p),m) for p ∈ P k
i ,m ≡ k mod m

and

σi(p, f) = di(ω̄(p),m, f) for p ∈ Qk
i ,m ≡ k mod m

Theorem 2A: A discrete-time game with infrequent elections has a stationary equilib-

rium and a unique equilibrium payoff.

Proof: Let V be the set of all bounded continuous functions on Ω × N where N =

{1, . . . , m̄}. This set, endowed with the sup norm, is a complete metric space. Let

JV (f1, f2,m) = û(f1(0), f2(0),m) + e−rλV (f1(λ), f2(λ), τ(m))
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such that û(·, 1) := u(·) and û(·,m) := 0 for m > 1; τ(m) = m+ 1 for 1 ≤ i ≤ m− 1 and

τ(m̄) = 1. Next, define

Q1
V (f1, y,m) = max

f2∈H(y)
JV (f1, f2,m)

Q2
V (f2, x,m) = min

f1∈H(x)
JV (f1, f2,m)

Λ1
V (ω,m) = min

f1∈H(ω1)
Q1

V (f1, ω2,m)

Λ2
V (ω,m) = max

f2∈H(ω2)
Q2

V (f2, ω1,m)

ΛV = Λ1
Λ2

V

By the same argument as the one given in the proof of Theorem 1A, Λ2
V (ω,m) is well-

defined and that the function Λ2
V is in V. Moreover, there is a unique V ∈ V such that

ΛV = V . In the following, let V1 = V and V2 = Λ2
V1
. The remainder of the proof mirrors

the proof of Theorem 1A above. The only difference is the inclusion of the state variable

m ∈ N .

Choose D2 such that

D2(f, ω,m, j) ∈


arg max

f2∈H(ω2)
Q2

V1
(f2, ω1,m) if j = 2

arg max
f2∈H(ω2)

JV2(f, f2,m) if j = 1.

Similarly, choose D1 such that

D1(f, ω,m, j) ∈


arg min

f1∈H(ω1)
Q1

V2
(f1, ω2,m) if j = 1

arg min
f1∈H(ω1)

JV1(f1, f,m) if j = 2.

Next, we define the dynamic decision problem α = (δ, b, w,X, T, S, δ) (for party 1) as

follows: δ = e−rλ, S = Ω× {1, . . . , n} × {1, 2}, X = H, b(ω, f,m, j) = H(ω2) and

w(f, ω,m, j) = û(ω,m)

T (f, ω,m, j) = (ω̄(f,D2(f, ω,m, j)), τ(m), 3− j)

It is easy to verify that Ŵ : S → IR such that

Ŵ (ω,m, j) =

{
V1 if j = 1
V2 if j = 2
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is a recursive value for α. Then, part (ii) of the Optimality Lemma implies that Ŵ is the

value for α. Define ρ1 such that

ρ1(ω,m, j) ∈


arg min

f1∈H(ω1)
Q1

V2
(f1, ω2,m) if j = 1

arg min
f1∈H(ω1)

JV1(f1, D2(f1, ω,m, j),m) if j = 2.

By construction ρ1 is unimprovable for the recursive value Ŵ and hence, part (ii) of the

Optimality Lemma implies that ρ1 is an optimal policy. Define the stationary strategy

di, i = 1, 2 as follows: di(ω,m) = Di(f, ω,m, i) (and note that Di is independent of the

first argument in state (ω,m, i)) and di(ω,m, f) = Di(f, ω̄(p),m, 3 − i). Since ρ1 is an

optimal policy in the decision problem α, it is immediate that d1 is a best response to d2.

A symmetric argument ensures that d2 is a best response to d1 and hence (d1, d2) is an

equilibrium. Uniqueness of the equilibrium payoff follows from an argument identical to

the one given in the proof of Theorem 1A above.

Proof of Theorem 4: Let ϵ, λ and n be as in the proof of Lemma 5. Assume player

2 chooses the pursuit strategy dn2 as defined prior to the proof of Lemma 5. (The pursuit

strategy is independent of m, the number of periods that have elapsed since the last

election.) Then, for any strategy of the opponent, (a) or (b) of Lemma 5 must hold for all

t ≥ 1. Lemma 3 then implies that along any trajectory θ consistent with player 2 choosing

dn2 we have u(θ(ℓ)) ≥ 0 for all ℓ = 1, 2, . . .. Therefore, player 2’s equilibrium payoff is

non-negative and an analogous argument for player 1 implies that equilibrium payoffs of

both players must be zero.

We claim that the strategy profile σ̂ = (σ̂1, σ̂2), defined below, is an equilibrium.

Let (d1, d2) be a stationary equilibrium strategy, the existence of which is guaranteed by

Theorem 2A. In σ̂, both players follow their pursuit strategies as long as no one deviates;

after any deviations both players revert to the stationary strategies (d1, d2).

To see that σ̂ is an equilibrium, we need only verify that no party benefits by being

the first one to deviate. Suppose party 1 were to deviate first in period k. Then, the

argument of the first paragraph establishes that by continuing with its pursuit strategy,

party 2 would guarantee a payoff of at least 0. Hence, party 2’s payoff following the

stationary equilibrium strategy must be greater or equal to 0. This implies that party 1
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cannot benefit from the deviation. Reversing the roles of party 1 and party 2 establishes

that σ̂ is an equilibrium. To conclude the proof of the theorem, we note that when both

parties employ their pursuit strategies one of them is always moving toward x∗ as fast as

possible; any party that is not always moving toward x∗ as fast as possible, reaches x∗

before its opponent. Therefore, ω∗ is reached at time 1 and both parties remain at that

state thereafter.

Proof of Theorem 5: Choose ϵ > 0 small enough so that condition (ii) of Lemma 3

holds and let λ < ϵ/2. Recall that

u(x, y) = −v(x)Γ(∆) + v(y)(1− Γ(∆)) + β(1− 2Γ(∆))

where ∆ = (y − x)/2. Furthermore, observe that Γ is strictly decreasing and Γ(0) = 1/2.

Therefore, we may choose β̄ such that for β > β̄, u(x, y) = 0 implies that |x − y| < ϵ.

Then, condition (ii) of Lemma 3 implies that u(x, y) = 0 if and only if x = y. Hence, we

conclude that if (x, y) = θ(ℓ) for some ℓ = 1, 2, . . ., then x = y.

In proof Theorem 4, we established that the equilibrium payoff after any history is 0.

Then, (1) the best payoff that any party can achieve in any election must be 0 and, by the

argument of the previous paragraph, (2) θ(ℓ) = (x, x) for some x. Assume that x ̸= x∗

for some ℓ. Without loss of generality, assume ℓ = 1 and x < x∗. For 1 ≤ k ≤ m̄, define

xk = x− kλ. We claim that θi((n− k)λ) = xk.

First, we prove that θi((m̄−1)λ) = x1; if not, then, at the end of period m̄−1, the last

period before the election, θi((m̄− 1)λ) ∈ (x− λ, x+ λ] for some i = 1, 2; without loss of

generality assume i = 2. If party 2 is the second mover in period m̄−1 then it can deviate

so that the new trajectory θ̂2 satisfies θ̂2(1) = y ∈ (x, x∗), |y − x| ≤ ϵ/2 yielding a payoff

u(x, y) > 0. This contradicts (1) above. If party 2 is the first mover in period m̄− 1, then

the preceding argument establishes that θ1((m̄− 1)λ) = x1. Again, party 2 can deviate so

that the new trajectory is θ̂2(1) ∈ (x, x∗) within ϵ/2 of x. Since θ1((m̄ − 1)λ) = x1, any

feasible trajectory for player 1 satisfies x − ϵ/2 ≤ θ̂1(1) ≤ x and, therefore, u(θ̂(1)) > 0,

contradicting (1) above. We have shown that (i) θi((m̄ − 1)λ) = x1 for i = 1, 2 and (ii)

party j = 3− i can guarantee itself a strictly positive payoff at any θ̂((m̄− 1)λ) such that

θ̂i((m̄− 1)λ) = x1, θ̂j((m̄− 1)λ) ∈ (x1, x1 + λ).
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Replacing x with x1 above, the same argument establishes that (i) θi((m̄− 2)λ) = x2

and (ii) party j = 3− i can guarantee itself a strictly positive payoff at θ̂((m̄− 2)λ) such

that θ̂i((m̄ − 2)λ) = x2, θ̂3−i((m̄ − 1)λ) ∈ (x2, x2 + λ). Successively replacing xk with

xk+1 and repeating this argument then implies that θi(0) = xm̄ = x − 1; that is, x = 1,

contradicting the fact that x < x∗ ≤ 1.

Proof of Theorem 6: Below, we specify a strategy, σ2, for player 2 that guarantees the

desired bound. Let K(ℓ, λ, γ) be the largest integer k such that k < [ℓ + 1 − γ]/λ. Thus,

period K(ℓ, λ, 0) = m̄(ℓ+1)− 1 is the last chance that the parties have for adjusting their

policies before the ℓ+ 1’th election and period K(ℓ, λ, 1) + 1 = m̄ℓ is the first chance that

the parties have for adjusting their policies after the ℓ’th election. To describe party 2’s

behavior, consider k such that K(ℓ, λ, 1) + 1 ≤ k ≤ K(ℓ, λ, 0) and η ∈ P k
2 ∪ Qk

2 . Then,

define σ2 as follows:

For k ≤ K(ℓ, λ, λ+ α/2), let

σ2(η)(t) =

{
max{ω̄2(η)− t, 1/2} if ω̄2(η) ≥ 1/2
min{ω̄2(η) + t, 1/2} if ω̄2(η) < 1/2

For k > K(ℓ, λ, λ+ α/2) and (x, y) = ω̄(η), let ŷ be a static best response to x. Then, let

σ2(η)(t) =

{
max{y − t, ŷ} if y ≥ ŷ
min{y + t, ŷ} if y < ŷ

It is straightforward to verify that this yields the following lower bound to player 2’s payoff:

min
z∈[0,1]

max
y∈[0,1]

min
x∈Bγ(z)

u(x, y)

where γ = 2λ + α. Since λ converges to 0 as the game converges to real time, the payoff

bound follows.

Proof that the lower bound in the Example is tight: In this section, we show that

the lower bound in Theorem 6 is tight; that is, we find an example in which party 1 can

guarantee a real-time payoff uα. Let

v(x) = x

β = 1/2

Γ(∆) =
1

2
+ 4∆3

α = .05

(6)
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Let z ∈ [.5, 1] be the unique value that satisfies

u(z − .05, 0) = u(z + .05, 1)

and note that for the parameters above z ≈ .8436. Let λn = .05/n so that there are

m̄ = 20n periods between elections and k ≥ 1 periods correspond to 0.05k units of time.

The strategy we will construct for party 1 is as follows: as soon as an election takes place,

party 1 moves as fast as possible to z; once it reaches z, party 1 stay put until the n period

before the election. In each of the last n periods, party 1 moves as fast as possible towards

x = z − .05 if the policy position of party 2 at the start of the current period is less than

or equal 1/2; otherwise, it moves as fast as possible towards x = z + .05.

We describe the strategy for the first 20n periods. The strategy repeats after each

election. Let η ∈ P k
1 ∪Qk

1 and let (x, y) = ω̄(η). Then, for k ≤ 19n,

σ1(η)(t) =

{
max{ω̄1(η)− t, z} if ω̄1(η) ≥ z
min{ω̄1(η) + t, z} if ω̄1(η) < z

and for 19n ≤ k ≤ 20n− 1 and η ∈ P k
1 ∪Qk

1 , let

σ1(η)(t) =

{
ω̄1(η)− t if ω̄2(η) ≤ 1/2
ω̄1(η) + t if ω̄2(η) > 1/2

Hence, with σ1, party 1 “mirrors” party 2’s movement around 1/2 with its own movement

around z. It follows that if (x, y) is the state at election time, then x is within 1/n of z +

α(y−1/2). Therefore, party 1 can ensure a real-time payoff of maxy∈[0,1] u(z+α(y−1/2), y).

Routine calculations reveal that since α = .1, this maximum is attained at y = 0 or y = 1.

Hence, the real-time payoff is at most u(z + α/2, 1). Similar calculations establish that

uα = maxy∈[0,1] minx∈Bα(z) u(x, 1) = minx∈Bα(z) u(x, 1) = u(z + α/2, 1) and hence, by

Theorem 6, u∗ = u(z + α/2, 1), proving that the bound of Theorem 6 is tight.
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