PEW: Georgy Egorov



Event Description

A receiver wants to learn multidimensional information from a sender, but she has capacity to verify only one dimension. The sender’s payoff depends on the belief he induces, via an exogenously given monotone function. We show that by using a randomized verification strategy, the receiver can learn the sender’s information fully if the exogenous payoff function is submodular. If it is (strictly) supermodular, then full learning is not possible.